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A B S T R A C T   

Winter hardiness depends on the ability of plants to tolerate a wide spectrum of environmental stresses, which 
can be affected by climate change in complex ways. Here, empirical Partial Least Squares Regression (PLSS) 
models of winter survival (WS) of winter wheat (Triticum aestivum L.) and triticale (Triticosecale x Wittmack) were 
created using data from six years of field experiments at multiple locations throughout Poland. These included 
553 winter wheat and 155 triticale accessions. Our aims were to: 1) predict WS on the basis of meteorological 
data; 2) identify the most critical weather events affecting WS of winter wheat and triticale under Polish con
ditions; and 3) predict WS for the simulated winters of 2040, 2060 and 2080 under climate change scenarios 
RCP2.6, RCP4.5, RCP6.0 and RCP8.5 for the experimental site with the lowest mean WS rate during the field 
experiments. The empirical models showed a high R2 for winter wheat (0.751), and a low R2 for winter triticale 
(0.160), because of the low winter damage to triticale observed during the experiments. The key climate factors 
affecting WS varied between species. Winter wheat was affected by winter severity, the number of freezing- 
thawing cycles, the thermal vegetation index and the freezing index in various winter months. Triticale was 
affected by late winter ice encasement and high numbers of freeze-thaw events. The predictions indicated that 
the WS of both winter wheat and triticale may decrease in the future, especially when more extreme climate 
change scenarios were considered. The main issue will be cold deacclimation connected with climate warming 
which will be more important for WS than the general increase in minimum winter temperatures. This finding 
indicates that deacclimation tolerance should be included in wheat and triticale breeding programs as a trait 
crucial for WS under future winters, at least in Central Europe.   

1. Introduction 

Winter hardiness is the ability of plants to survive the winter. It de
pends on the plant’s potential to tolerate a wide spectrum of environ
mental stresses, such as freezing, rapidly changing temperatures, low 
light intensity, desiccation, wind, snow cover, ice-encasement, or 
various winter-related diseases (Rapacz et al., 2014). Climate change is a 
major challenge for the world economy, especially for the agricultural 
sector, where climate conditions strongly and directly influence crop 
yields. Thus, knowledge about the effects of climate change on crop 
yields and the plant biology mechanisms underlying crop yields are 
crucial for adapting crops to potentially greater climate variability. 

An increase in the surface temperature of the Earth indicates a lower 
risk of crop exposure to extremely low temperatures. However, the risk 

of winter damage to crops may not decrease proportionally because of 
the complex interactions among environmental factors (Rapacz et al., 
2014). For example, the frequency, degree and length of extreme winter 
warming events leading to snowmelt may increase, especially in loca
tions experiencing a transition from cold to warm winter climatic con
ditions (Johansson et al., 2011; Shabbar and Bonsal, 2003). This may 
increase the risk of freezing injury in crops that are not covered with 
snow. Future climate projections suggest that cold acclimation will 
occur later in the autumn, which may affect energy partitioning between 
elongation growth, the accumulation of organic reserves and cold 
acclimation (Dalmannsdottir et al., 2017). Also, temporary warming 
during winter may cause decrease in snow cover and deacclimation, 
eventually reducing winter hardiness (Rapacz et al., 2014; Rapacz et al., 
2017). All these factors, often with contradictory effects on winter 
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survival (WS), make plant overwintering viability under future climates 
an open question (Rapacz et al., 2014). 

Research on the impact of projected climate change on the over
wintering of major agricultural crops is limited, especially in Central 
Europe, including Poland which lies on the border between temperate 
and continental climates. In Poland, the cold winter climate is currently 
a major limiting factor in crop production. In common wheat, the major 
agricultural crop in the country, yield reduction owing to unfavorable 
winter conditions may, in extreme cases, exceed 32% (representing a 
loss of approximately 6 billion Euros) (GUS, 2012). Basic research on 
winter hardiness has focused on freezing tolerance and the mechanisms 
of cold acclimation with decreasing temperature (Gusta and Wisniew
ski, 2013). The effects of different winter stress conditions on winter 
hardiness have not been fully identified. 

Simulation models are essential tools for understanding climate 
change and its impact on vegetation, including agricultural crops. Each 
model provides a unique representation of plant processes in the form of 
mathematical functions. These models often simulate important features 
of the micro-climate around the plant. For example, a large number of 
process-based models are available that simulate the yield-building 
processes in winter common wheat e.g., the eight models that were 
compared for simulating wheat under contrasting conditions in Europe 
(Palosuo et al., 2011). Some of existing models as CropSyst (Stockle 
et al., 1994) and CERES-Wheat (Ritchie et al., 1988) consider WS but the 
models do not explicitly allow for predicting WS. This limits their use
fulness for predicting the impact of climate change on crops in regions 
like Poland where WS is a key issue. Estimating the risk of winter injury 
in crops under climate change is limited to a fairly simple approach 
(Trnka et al., 2011, 2014), where the risk of frost injury in winter wheat 
is related to the number of days with a daily minimum temperature 
below a fixed freezing tolerance level (− 20 ◦C) on the days without a 
continuous snow cover. In those studies, weather data were processed 
through a snow cover model, thus accounting for the insulating effect of 
snow against frost exposure. However, this approach ignores the fact 
that in reality the freezing tolerance of plants varies greatly over the 
winter, being affected by a range of external and internal factors. Other, 
most comprehensive approaches to estimate the risk of winter injury in 
winter cereals were also developed but have not been used for the WS 
predictions under climate change (Bergjord et al., 2008; Bergjord Olsen 
et al. 2018; Fowler et al., 1999; Persson et al., 2017). 

A number of researchers have modelled the freezing tolerance or WS 
of winter plants of agricultural importance. For example, a well- 
established model, FROSTOL, (Bergjord et al., 2008), calculates 
changes in the freezing tolerance of winter wheat (the temperature at 
which 50% of plants were killed — LT50) as a function of temperatures 
from sowing onwards. The FROSTOL model was further validated for 
winter hardiness for two winter seasons in 20 field experiments with 
four cultivars of known LT50 (Bergjord Olsen et al., 2018). However, this 
model was not developed to predict the WS under climate change. In 
another model developed for wheat for the same climatic zone, factors 
such as the presence of snow cover and the occurrence of 
freezing-thawing cycles were also considered (Vico et al., 2014). 
Another approach in WS modeling was presented by Waalen et al. 
(2013). In this study PPLS regression using a set of agrometeorological 
indices from autumn and winter was successfully used in WS modeling 
of oilseed rape and turnip oilseed rape (Waalen et al., 2013). A very 
similar approach has been used in our work because this approach 
makes it possible both to show what the impact of particular factors in 
the course of autumn and winter weather is on WS and at the same time 
it is possible to calculate the values of the same agrometeorological 
indices for climate change scenarios and thus predict the future changes 
in WS. 

Most projections of future climate conditions, for example, those 
provided by the IPCC, operate on a relatively coarse spatial and tem
poral resolution. Typically, they provide annual or seasonal values for 
temperature and rainfall for large regions (Bowyer et al., 2014). To 

assess the consequences of climate change for the WS of crops, regional 
data needs to be spatially and temporally downscaled, as WS mecha
nisms operate at a field level and are largely influenced by the 
day-to-day variations in many weather variables (eg. extreme freezing, 
the presence of snow cover, temperature fluctuations causing 
de-acclimation). The studies predicting the future changes in WS are 
rare and have not been systematically carried out for agricultural crops 
in Poland. However, some work in this field has been done for grasslands 
in Northern Europe (Höglind et al., 2013; Thorsen and Höglind, 2010). 
In these studies, simulations of micro-climatic conditions were com
bined with simulations of frost and ice-encasement tolerance to assess 
the risk of frost- and ice-related damage under future climate conditions. 

The aim of our study was to build empirical models linking different 
agrometeorological indices characterizing winter microclimate in the 
experimental fields in Poland with WS of two cereal species – winter 
common wheat (Triticum aestivum L.) and triticale (Triticosecale x Witt
mack.). These models suggest various winter microclimate characteris
tics most important for WS during the years of the study and were used 
to project the future WS at the selected experimental point by including 
simulated microclimate data in the empirical models to assess the future 
risks for WS, with the hypothesis that deacclimation during winter will 
seriously affect the risk of WS under predicted climate change. 

2. Material and methods 

2.1. The development of winter hardiness models 

To fill the existing gaps in knowledge concerning the present and 
future risks for the winter hardiness of cereals in Central Europe, we 
built empirical models of winter hardiness based on six years of multiple 
field studies in more than ten environmental conditions in Poland. We 
looked at the winter hardiness of winter common wheat (Triticum aes
tivum L.) as well as triticale (Triticosecale x Wittmack.). Wheat was 
selected because of its economic importance and triticale, because it is 
winter hardy to a level where winter damage is economically unim
portant. The models were built on the basis of previous studies (Waalen 
et al., 2013) with some important modifications. 

2.1.1. Field studies of winter hardiness 
The empirical models were based on a 6-year experiment 

(2013–2019) performed in 11 (seven for wheat and seven for triticale) 
locations in Poland (Fig. 1): Borowo (52.115◦ N, 16.777◦ E, elevation 
(elev.) 77 m), Dębina (54.130◦ N, 19.032◦ E, elev. − 1 m), Kobierzyce 
(50.973◦ N, 16.948◦ E, elev. 133 m), Krzemlin (53.072◦ N, 14.872◦ E, 
elev. 80 m), Małyszyn (52.744◦ N, 15.174◦ E, elev. 77 m), Nagradowice 
(52.318◦ N, 17.145◦ E, elev. 85 m), Laski (51.810◦ N, 21.141◦ E, elev. 
125 m), Polanowice (50.203◦ N, 20.085◦ E, elev. 259 m), Smolice 
(51.699◦ N, 17.184◦ E, elev. 107 m), Strzelce (52.317◦ N, 19.405◦ E, 
elev. 123 m), and Szelejewo (51.859◦ N, 17.159◦ E, elev. 125 m). 

In the assessment of winter hardiness, hundreds of accessions (533 
and 155 for wheat and triticale, respectively) were studied. The set of 
accessions was different between the years with common standard va
rieties (wheat: Ozon, KWS Lochow; Patras, Saaten Union; triticale: 
Fredro, Danko Plant Breeding; Meloman, Strzelce Plant Breeding). The 
remainder of the accessions originated from Polish breeding companies 
(Danko Plant Breeding, Choryń, Poland; Małopolska Plant Breeding, 
Kraków, Poland; Smolice Plant Breeding, Smolice, Poland; Strzelce Plant 
Breeding, Strzelce, Poland; Poznań Plant Breeders, Tulce, Poland) and 
were advanced breeding materials (F8–F10). The complete list of acces
sion used is available on request from the corresponding author. 

Plants of both species were sown in 10 m2 experimental plots at a 
density of 400 seeds per m2 with three replicates using a fully ran
domized block design. Winter survival was estimated on the basis of 
visual observations of plant condition after winter using a score ranging 
from 1 to 9 (Rapacz et al., 2015), where 9 mean that 0%–5% of plants 
were winter-killed; 8: 5–15%; 7: 15–25%; 6: 25–40%; 5: 40–60%; 4: 
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60–75%; 3: 75–85%; 2: 85–95%; and 1: 95–100%. Observations were 
carried out between 10 and 14 days after the start of cereals vegetation 
defined as the beginning of regrowth, when old, undamaged leaves 
straighten up and become firm, and new leaves appear on damaged 
plants (Najewski et al., 2013). This is usually observed at times when the 
maximum daily air temperature remains above 5 ◦C for several days. 

The weather data used for the model development were taken from 
SYNOP available at: http://www.ogimet.com (Valor and López, 2016). 
SYNOP data were used because of missing data and a lack of standard
ization in direct field observations as explained in Rapacz et al. (2017). 
The World Meteorological Organization indices of the weather stations 
are shown in Fig. 1. The data from SYNOP were adjusted for local 
microclimate conditions when necessary to accurately document critical 
minimum temperatures and snow cover depth at this time were 
measured directly in the experimental fields. 

2.1.2. Weather data processing 
Table 1 presents the list of weather variables calculated on the basis 

of meteorological data from 11 locations (taken from SYNOP). Agro
climatic indices were calculated on a monthly bases except for heat units 
(twice during the winter) and DIs (before the maximum day temperature 
drops below 0 ◦C). All agroclimatic indices were normalized by dividing 
by their own standard deviation. 

The agroclimatic indices were selected on the basis of similar model 
developed before for oilseed (Waalen et al., 2013). Additionally, due to 
increasing problem of the role of deacclimation tolerance in the WS of 
wheat and triticale observed in Poland de-acclimation indicies (DIs) 
which showed the link between the temperature proceeding freezing 
events in winter and the cold acclimation/deacclimation status of the 
plants (Rapacz et al., 2017) were included in our empirical models. 

2.1.3. PLSR regression models 
PLSR (named also PPLS; Partial Least Squares Regression) is a 

multivariate regression method especially suitable for modeling if there 
are many, possibly correlated, predictor variables (colinearity between 

variables), and relatively few samples. The PLSR models were developed 
using the R package ‘pls’ v.2.7–3 (Mevik et al., 2020). In brief, observed 
WS, measured for 2214 and 559 individual cases (accession × location) 
of wheat and triticale, respectively, and weather variables (73 and 68 for 
wheat and triticale) were used as possibly correlated predictor variables. 
Both data sets were randomly sampled into training (1500 and 400 
cases) and testing (714 and 199 cases) data sets. The PPLS models were 
based on training datasets. The optimum number of components to be 
incorporated in the model was selected using leave-one-out cross-
validation so that the cross-validation RMSEP was minimized. For con
sistency, the selection of the optimal number of components was done 
on the basis of both a one-sigma heuristic (Hastie et al., 2009) and a 
permutation approach (van der Voet, 1994). The final models were 
fitted using an optimal number of components. Models were verified by 
predicting WS for the testing dataset and comparing the predicted and 
measured values. Pearson correlations and linear regressions were 
calculated using the R package ‘stat’ v.3.6.2. The importance of vari
ables was evaluated using the VIP and the vector of RC (β), calculated 
with the R package ‘plsVarSel’ v.0.9.6 (Mehmood et al., 2012). The 
RMSEP (root mean squared error of prediction) values plotted against 
the component numbers showed a gradual decline, indicating a good 
model performance, without the risk of bias due to high variance (Faber 
and Rajkó, 2007). The optimal number of components, based on low 
RMSEP values without the loss of predictive power, was set to 10 for 
wheat and two for triticale. The predictive ability of the PLS regression 
models was evaluated using testing data sets that were not used for 
model development. The optimal number of components, based on low 
RMSEP values without the loss of predictive power, was set to 10 for 
wheat and two for triticale. The predictive ability of the PLS regression 
models was evaluated using testing data sets that were not used for 
model development. 

2.2. Modeling wheat and triticale winter hardiness under climate change 

To simulate the changes in winter hardiness under climate change 

Fig. 1. Location of field trials and weather stations used for the development of the empirical models of winter survival (WS) of wheat and triticale in Poland.  
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the experimental site in Dębina was chosen because it had the lowest 
mean WS of winter wheat during the experiment and because at this site 
both species were assessed for winter hardiness (in the case of triticale, 
the mean survival rate was lower in Laski, but wheat was not tested at 
that site). 

2.2.1. Weather data generation 
To model wheat and triticale winter hardiness under climate change, 

generated meteorological data were used according to climate change 
scenarios based on RCPs. The choice of RCP scenarios in relation to the 
SRES, including the A1B scenario most frequently used in Poland . RCP 
scenarios were better at describing climate changes in the earlier period 
(using data from the 20th century and the beginning of the 21st century) 
than SRES scenarios, which allows us to assume that projections to 2080 

will also be better (van Vuuren et al., 2011). This fact follows from the 
IPCC report (2013), which changed the philosophy of model construc
tion by adopting RCP scenarios. 

The climatic data that formed the baseline for the study were a series 
of observations in the months October–February for the years 
1999–2020 from the weather station at Dębina (54.130◦ N, 19.032◦ E, 1 
m above sea level). These data were used to generate a 500-year series of 
minimum and maximum temperatures for each of the RCP2.6, RCP4.5, 
RCP6.0 and RCP8.5 scenarios and for the forecast horizon for 2040, 
2060 and 2080 and for 2010, the reference year of the study (mid-year of 
the period 1999–2020). The RCP2.6, RCP4.5, RCP6.0 and RCP8.5 sce
narios, according to new models of the Earth system including CH4 and 
N2O gasses, correspond to predicted CO2 concentrations for 2100 of 475 
ppm, 630 ppm, 800 ppm and 1313 ppm respectively (IPCC, 2013). 

The WGENK model (Kuchar, 2004) was used to generate the weather 
data, which is a modification of the commonly used WGEN model 
(Richardson and Wright, 1984). 

2.2.2. Simulation of field survival data 
The appropriate selection of the variables used in model develop

ment reduces the analysis time and facilitates the interpretation of the 
results. The suggested cut-off for the importance of variables, expressed 
as a VIP value, is VIP>1; however, a threshold between 0.83 and 1.21 is 
acceptable (Chong and Jun, 2005). Generally, the VIP values for most 
variables were above 0.83. However, the weather variables related to 
the rainfall or snowfall in each month showed low RC values. Addi
tionally, these data were not used to calculate other weather variables 
with relatively high VIP and RC values, e.g., DITmax and DITmean. 
Therefore, we repeated the PLSR modeling, described in Section 2.1.3, 
using data sets without weather variables related to rainfall/snowfall. 
The comparison of measured and predicted WS obtained from the 
testing data sets for both species were satisfactory, thus only tempera
ture data were simulated. The final set of 54 weather variables was 
calculated as described in Section 2.1.2, using a personal Python script 
(Supplementary File 1). The fitted models for wheat and triticale were 
used to predict future WS based on simulated variables. Before pre
dicting the future WS under different climate scenarios, additional 
validation of models was done using a simulated data set, containing 
current temperatures. To keep the predicted WS consistent with the 
scale used for measured data, all predicted values were normalized by 
multiplying the value by the calculated factor mean
WSmeasured/meanWSpredicted (Supplementary Fig. 2). The maximum 
value of measured WS was nine, reflecting 0–5% of winter-killed plants. 
However, the simulated weather data included combinations that were 
not observed in the experimental data, that were used for model 
development. Therefore, a combination of variables that favorably af
fects WS may result in values greater than 9, although any value above 9 
does not reflect better performance of plants. Those, predicted WS 
values for each species and scenario were transformed so that values 
higher than nine were replaced by the maximum. 

3. Results 

3.1. The development of empirical models of winter survival for wheat 
and triticale 

In the case of winter wheat, the predictive power of the model was 
high (R2 = 0.75; Fig. 2). The correlation between measured and pre
dicted WS values of triticale suggested a lower predictive power of the 
model (R2 = 0.16, Fig. 3). This approach of model validation required a 
large number of samples for both training and evaluation. The low R2 for 
triticale was likely because of the use of a low number of different cases 
(accession × location) and also a high rate of survival, which meant that 
in case of triticale 14% of plants had WS<6, while in case of triticale 
number of plants with low rate of survival was higher (21%). However, 
the predicted values were within the range observed for the measured 

Table 1 
Weather variables included in the PPLS analysis.  

Weather variable Calculation method Reference 

Deacclimation index based 
on maximum daytime 
temperature (DITmax) 

DITmax=(
∑− 1

n=− 14(Tmax − 5) ≥ 0) −
(
∑− 1

n=− 14(5 − Tmax)> 0)
5 ◦C threshold was assumed between 
acclimation/deacclimation 
(calculated during the 2-week period 
before the maximum day temperature 
dropped below 0 ◦C)  

Rapacz 
et al., 2017 

Deacclimation index based 
on minimum daytime 
temperature (DITmin) 

DITmin= (
∑− 1

n=− 14(Tmin − 5) ≥ 0) −
(
∑− 1

n=− 14(5 − Tmin)> 0)
5 ◦C threshold was assumed between 
acclimation/deacclimation 
(calculated during the 2-week period 
before the maximum day temperature 
dropped below 0 ◦C)  

Rapacz 
et al., 2017 

Heat units 
Heat units=

∑[

(

Tmax +
Tmin

2

)

− Tbase], 

Tbase=3 ◦C, days with a Tmin< 3 ◦C are 
not included 
(calculated twice: October–November, 
December–March)  

Waalen 
et al., 2013 

Mean air temperature Arithmetic mean of the mean daily air 
temperature 
(calculated monthly October–March) 

Waalen 
et al., 2013 

Maximum air temperature The highest air temperature 
(calculated monthly October–March) 

Waalen 
et al., 2013 

Minimum air temperature The lowest air temperature 
(calculated monthly October–March) 

Waalen 
et al., 2013 

Number of freeze-thaw 
events 

Freeze thaw events were counted 
when the mean daily temperature 
dropped below 0 ◦C 
(calculated monthly 
November–March) 

Waalen 
et al., 2013 

Monthly sum of the mean 
daily air temperature 

(calculated monthly October–March) Waalen 
et al., 2013 

Number of days with 
minimum air 
temperature <− 5 ◦C 

(calculated monthly October–March) Waalen 
et al., 2013 

Freezing index Freezing index=
∑Tmean , days with a 

Tmean> 0 ◦C are not included, Tmean 

mean daily air temperature 
(calculated monthly 
November–March)  

Waalen 
et al., 2013 

Freezing period Number of days with Tmean < 0 ◦C 
(calculated monthly 
November–March)  

Waalen 
et al., 2013 

Intensity of winter Intensity of winter=freezing index/ 
freezing period 
(calculated monthly 
November–March) 

Waalen 
et al., 2013 

Mean snow depth (calculated monthly 
November–March) 

Waalen 
et al., 2013 

Number of days with snow 
cover 

(calculated monthly 
November–March) 

Waalen 
et al., 2013 

Number of days with ice 
enhancement 

(calculated monthly 
November–March) 

Waalen 
et al., 2013  
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values and the Welch two-sample t-test (p-value = 0.5384) supported 
the hypothesis that there was no difference between the means of 
measured and predicted values. Therefore, both models were used to 
predict WS on the basis of the simulated data. 

The initial PLS investigation was focused on evaluating which 
weather variables had the strongest impact on WS. The variable 
importance was reflected by two commonly accepted measures, VIP that 
shows the contribution of each variable according to the variance 
explained by each PLS component, and the vector of regression co
efficients (RCβ) which is a measure of the association between each 
variable and the response. The calculated values shown in Table 2 were 
also used for variable selection to develop the final models to predict the 
future impact of temperatures on WS, described below. 

Fig. 2. Predicted vs. measured winter survival (WS) of winter wheat using 
linear regression. The model was developed using 73 variables and 10 com
ponents. In WS score, 9 means that 0%–5% of plants were winter-killed and 
1: 95–100%. 

Fig. 3. Predicted vs. measured winter survival (WS) of winter triticale using 
linear regression. The model was developed using 68 variables and two com
ponents. In WS score, 9 means that 0%–5% of plants were winter-killed and 
1: 95–100%. 

Table 2 
Importance of each meteorological factor used in the PLS model, reflected by VIP 
and the regression coefficient (RCβ) of winter wheat and triticale. VIP values 
above 1 are in bold.  

Weather variables Wheat Triticale 
VIP RC(β) VIP RC(β) 

DI Tmax 1.03 − 0.28 0.66 − 0.02 
DI Tmean 1.21 − 0.37 0.86 − 0.03 
Heat units Oct.–Nov. 1.01 0.06 0.78 0.00 
Heat units Dec.–Mar. 1.38 − 0.33 0.29 0.00 
Mean air temperature [ ◦C] (Oct.) 1.07 0.00 1.08 0.01 
Mean air temperature [ ◦C] (Nov.) 0.73 − 0.06 0.13 0.00 
Mean air temperature [ ◦C] (Dec.) 0.92 − 0.10 0.48 − 0.01 
Mean air temperature [ ◦C] (Jan.) 1.10 0.16 0.86 − 0.01 
Mean air temperature [ ◦C] (Feb.) 0.80 0.08 – – 
Mean air temperature [ ◦C] (Mar.) 0.06 − 0.01 1.45 0.03 
Maximum air temperature [ ◦C] (Oct.) 0.90 − 0.14 0.48 0.00 
Maximum air temperature [ ◦C] (Nov.) 0.83 − 0.03 0.44 − 0.01 
Maximum air temperature [ ◦C] (Dec.) 0.99 0.22 0.23 0.00 
Maximum air temperature [ ◦C] (Jan.) 0.88 0.05 0.70 0.01 
Maximum air temperature [ ◦C] (Feb.) 0.82 0.08 1.79 0.05 
Maximum air temperature [ ◦C] (Mar.) 0.52 − 0.02 1.45 0.02 
Minimum air temperature [ ◦C] (Oct.) 1.16 − 0.12 0.59 0.02 
Minimum air temperature [ ◦C] (Nov.) 1.15 0.11 0.27 0.01 
Minimum air temperature [ ◦C] (Dec.) 1.12 0.14 1.03 0.03 
Minimum air temperature [ ◦C] (Jan.) 0.95 0.02 1.20 − 0.04 
Minimum air temperature [ ◦C] (Feb.) 1.20 0.21 1.75 − 0.05 
Minimum air temperature [ ◦C] (Mar.) 0.73 0.07 0.68 0.00 
Number of freeze thaw events (Nov.) 0.89 0.07 0.93 − 0.02 
Number of freeze thaw events (Dec.) 1.06 0.31 1.14 0.03 
Number of freeze thaw events (Jan.) 0.68 0.06 1.67 0.04 
Number of freeze thaw events (Feb.) 1.04 − 0.07 0.77 − 0.02 
Number of freeze thaw events (Mar.) 0.78 − 0.06 1.88 − 0.06 
Sum of the mean daily air temp [ ◦C] (Oct.) 1.07 0.02 1.05 0.01 
Sum of the mean daily air temp [ ◦C] (Nov.) 0.73 − 0.02 1.21 − 0.04 
Sum of the mean daily air temp [ ◦C] (Dec.) 0.90 − 0.09 0.45 0.00 
Sum of the mean daily air temp [ ◦C] (Jan.) 1.11 0.17 0.85 − 0.01 
Sum of the mean daily air temp [ ◦C] (Feb.) 0.80 0.06 0.43 0.01 
Sum of the mean daily air temp [ ◦C] (Mar.) 0.05 0.00 1.42 0.03 
Days with min. air temp <− 5 ◦C (Oct.) 1.36 0.05 – – 
Days with min. air temp <− 5 ◦C (Nov.) 1.05 0.05 1.27 0.04 
Days with min. air temp <− 5 ◦C (Dec.) 1.03 0.09 1.78 − 0.05 
Days with min. air temp <− 5 ◦C (Jan.) 1.04 − 0.07 0.66 0.00 
Days with min. air temp <− 5 ◦C (Feb.) 0.91 0.17 1.35 0.04 
Days with min. air temp <− 5 ◦C (Mar.) 0.71 − 0.11 0.56 0.01 
Freezing index (Nov.) 1.14 0.27 0.48 − 0.01 
Freezing index (Dec.) 1.03 − 0.11 1.26 0.04 
Freezing index (Jan.) 1.15 0.22 0.78 − 0.01 
Freezing index (Feb.) 0.66 0.08 0.82 − 0.02 
Freezing index (Mar.) 0.65 0.11 0.62 − 0.02 
Freezing period [days] (Nov.) 0.97 − 0.05 0.58 0.00 
Freezing period [days] (Dec.) 0.93 0.09 0.54 − 0.02 
Freezing period [days] (Jan.) 1.12 − 0.11 0.84 0.01 
Freezing period [days] (Feb.) 0.88 0.00 0.08 0.00 
Freezing period [days] (Mar.) 0.59 − 0.11 0.53 − 0.01 
Intensity of winter (Nov.) 1.32 − 0.42 0.40 − 0.01 
Intensity of winter (Dec.) 1.09 − 0.21 0.97 − 0.02 
Intensity of winter (Jan.) 0.96 − 0.03 0.91 0.03 
Intensity of winter (Feb.) 1.22 − 0.44 1.23 0.03 
Intensity of winter (Mar.) 0.69 − 0.07 0.74 − 0.02 
Mean snow depth (Oct.) 1.17 0.04 – – 
Mean snow depth (Nov.) 0.78 − 0.15 1.45 − 0.03 
Mean snow depth (Dec.) 1.01 0.16 0.99 0.03 
Mean snow depth (Jan.) 0.89 − 0.10 1.20 − 0.01 
Mean snow depth (Feb.) 0.65 0.09 1.48 0.05 
Mean snow depth (Mar.) 0.52 − 0.07 0.87 0.03 
Number of days with snow cover (Oct.) 1.36 0.05 – – 
Number of days with snow cover (Nov.) 0.72 − 0.03 1.00 − 0.01 
Number of days with snow cover (Dec.) 1.11 0.18 1.15 0.04 
Number of days with snow cover (Jan.) 1.23 0.12 0.69 0.01 
Number of days with snow cover (Feb.) 1.03 − 0.13 0.24 0.01 
Number of days with snow cover (Mar.) 0.59 0.07 0.32 0.01 
Days with ice enhancement (Oct.) 1.09 − 0.04 0.30 0.01 
Days with ice enhancement (Nov.) 0.64 − 0.07 0.32 0.01 
Days with ice enhancement (Dec.) 0.73 0.04 0.16 0.00 
Days with ice enhancement (Jan.) 1.00 0.28 0.79 − 0.01 
Days with ice enhancement (Feb.) 0.82 0.17 1.83 − 0.05 
Days with ice enhancement (Mar.) 1.07 − 0.06 1.83 − 0.04  
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3.2. The weather variables affecting the winter survival of winter wheat 
and triticale 

The effects of different weather indicators on WS were complex and 
differed for winter wheat and triticale (Table 2). In the case of winter 
wheat, the factors that were highly correlated with WS were: winter 
severity in November and February, DIs and the number of freezing- 
thawing cycles in December, the thermal vegetation index during the 
winter and the freezing index in November as well as the number of days 
with ice enhancement in January (although the VIP value was low in this 
case). Thus, it seems that the main impacts on winter wheat survival 
were connected with an insufficient level of cold acclimation caused by 
warm temperatures both at the beginning of the winter (November), 
after deacclimation during the winter, and at the end of the winter 
(February). 

In the case of triticale, all the RC values were low, thus, no weather 
variables were found that clearly affected WS. However, looking at the 
highest VIP values, ice encasement (February and March) and a higher 

number of freeze-thaw events in March decreased the survival rate of 
triticale. This suggested that triticale was more susceptible to extreme 
winter conditions at the end of the winter. The maximum air tempera
ture in February together with a higher number of freezing–thawing 
cycles in January increased WS suggesting that this species may not be 
susceptible to deacclimation during winter under present conditions. WS 
also decreased by days with air temperature <5 ◦C in December. 

3.3. Predictions of future winter damage risks in wheat and triticale under 
different climate change scenarios 

The reduction of variables required re-fitting of the models. The 
optimum number of components for the reduced data sets was nine for 
the wheat model and three for the triticale model. The other data for 
model development and validation of predictive power were 
unchanged. 

In the case of wheat, the predictive power of the model, evaluated on 
the basis of the correlation between the measured and predicted values, 

Fig. 4. Distribution of predicted winter wheat winter survival (WS), based on simulated weather conditions in Dębina, Poland, calculated for the reference year of the 
field experiments (2010), and in 2040, 2060, and 2080 for four climate change scenarios (RCP 2.6, RCP 4.5, RCP 6.0 and RCP 8.5). In WS score, 9 means that 0%–5% 
of plants were winter-killed and 1: 95–100%. 
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was slightly weaker when nine components were used (R2 = 0.73, 
Supplementary Fig. 3a) as compared to the initial model. There was no 
difference in the means of measured vs. predicted values (Welch two- 
sample t-test, p-value = 0.3515). The variable selection improved the 
triticale model, as reflected by the slightly higher R2 (0.18, Supple
mentary Fig. 3b). 

3.3.1. Winter wheat 
The predicted WS rates of winter wheat at Dębina were clearly lower 

than calculated for the current conditions with the exception of RCP2.6 
(especially in 2080) (Fig. 4, Supplementary Fig. 4). Winter hardiness got 
worse with an increasing time horizon and level of assumed temperature 
increase. The greatest decrease in the winter hardiness of winter wheat 
was predicted for 2080 and 2060 in the RCP8.5 scenario and for 2080 in 
RCP6.0. In these cases, the probability of WS below the critical value of 
5, which can cause considerable economic loss (see Discussion), was also 

clearly higher. In the case of RCP2.6 (all the years of prediction) and 
RCP4.5 (2040, 2060) the probability decreased. 

3.3.2. Winter triticale 
In the case of the hardier triticale WS decreased for the more extreme 

climate change scenarios (Fig. 5, Supplementary Figure 5). This was 
especially visible in the case of RCP8.5 for 2080 and 2060. Under 
RCP2.6 winter hardiness stayed at the same level or even increased. It 
must be also emphasized that neither the calculations for 2020 nor the 
future predictions pointed to the possibility of economic losses owing to 
lower winter hardiness of triticale because no WS values <5 were re
ported (see Discussion). 

Fig. 5. Distribution of predicted triticale winter survival (WS) in Dębina (Poland), based on simulated weather conditions, calculated for the reference year of the 
field experiments (2010), and in 2040, 2060, and 2080 for four climate change scenarios (RCP 2.6, RCP 4.5, RCP 6.0 and RCP 8.5). In WS score, 9 means that 0%–5% 
of plants were winter-killed and 1: 95–100%. 
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3.4. The possible role of deacclimation in winter survival under a 
changing climate 

In the climate change scenarios that assumed the highest increase in 
CO2 concentrations in the atmosphere, a clear decrease in predicted WS 
was shown for both cereal species (Figs. 4, 5; Supplementary Figures 4, 
5). However, the increase in the minimum winter temperatures in our 
test site was within predicted changes under climate warming (Sup
plementary Fig. 6). Thus, the causes for the potential decrease in WS 
were connected with other weather variables. 

The negative impact on WS observed in the RCP8.5 scenario, espe
cially in 2060 and 2080, seemed to be related to changes in DIs (DITmax 
and DITmean). These indices indicate the effectiveness of deacclimation 
(when positive) or acclimation (negative) before the absolute minimum 
winter temperature (Rapacz et al., 2017). It was shown that, depending 
on the weather conditions during winter, both DITmean or DITmax were 
able to characterize deacclimation and, thus, both were included in our 
models. The correlation calculated between WS and the two indices 
indicated that their increasing values, which reflected the higher tem
peratures before the period of frost, were negatively correlated with the 
WS predicted for wheat (DITmax vs. WS r = − 0.32, r = − 0.34, r = − 0.37 
in RPC8.5_2040, RPC8.5_2060 and RPC8.5_2080, respectively) (Sup
plementary Table 7). 

Other weather variables that negatively affected WS in RPC8.5_2080 
were heat units Dec.–Mar. (r = − 0.32), increase of Tmin, monthly sum of 
the mean daily air temperature, and intensity of winter in February (r =
− 0.34, r = − 0.37, and r=− 0.34, respectively). All these factors, with the 
exception of the last relate to deacclimation and winter intensity in 
February, when deacclimation is most likely to occur before freezing, 
and may reveal the effect of prior deacclimation.RCP 6.0 and RCP 8.5). 
In WS score, 9 means that 0–5% of plants were winter-killed and 1: 
95–100%. 

A similar relationship was seen for triticale, although, as also 
observed for the present, the effects of the weather variables, especially 
DITmean, seemed to be weaker than for wheat (Table 2): DITmax vs. WS r 
= − 0.32, r = − 0.33, r = − 0.36 in RPC8.5_2040, RPC8.5_2060, and 
RPC8.5_2080, respectively; DITmean vs. WS r = − 0.31 and r = − 0.34 in 
RPC8.5_2060, and RPC8.5_2080. 

Moreover, for both species the deterioration of WS in RPC8.5_2080 
was related to a decrease in the average number of days with Tmin below 
− 5 ◦C in February (wheat r = 0.39, triticale r = 0.41). If compared to the 
other scenarios, for which the average number of days with Tmin below 
− 5 ◦C varied between 7 and 8 days, in the RPC8.5_2080 scenario it was 6 
days on average (Supplementary Table 7). 

As suggested above, a major factor affecting the predicted future 
decrease in WS rate of both species seemed to be deacclimation. The 
values of the DIs increased considerably (which means that deacclima
tion will be more effective), the highest values being predicted for 
RCP8.5 and RCP6.0 scenarios for 2080 (Fig. 6, Supplementary Figures 8, 
9). In the case of RCP2.6, an increase of DI values was predicted for 2040 
only, while in 2060 and 2080 a considerable decrease was predicted. 
These data were comparable with the predictions of winter hardiness in 
both species, where an increase in WS was predicted under the RCP2.6 
scenario with a final excess over the values estimated for 2020 in 2080 
(Figs. 4, 5; Supplementary Figs. 4, 5). 

4. Discussion 

Empirical models linking local microclimate data and plant winter 
survival were developed for two cereal species. Similar efforts were 
performed also before. In Waalen et al. (2013) paper, PPLS regression 
models were created for oilseed rape and turnip oilseed rape on the basis 
of a 3-year study in two locations in Norway. Owing to the high vari
ability in WS observed between studied accessions, these models were 
characterized by high determination coefficients (R2 were 0.81 and 
0.87, depending on species). In the case of the FROSTOL model the mean 

R2 between the simulated and observed WS class model was between 
37% and 75%, depending on the country (Sweden, Norway, respec
tively), which was explained as the occurrence of stress factors not 
included in the model at the Norwegian locations (Bergjord Olsen et al., 
2018). In our model, based on a 6-year experiment performed in seven 
experimental sites for each species, the R2 for wheat was similar (0.75) 
to the previous study but it was very low in the case of winter triticale 
(0.16). This was connected with very low variability of WS between the 
study years/accessions/sites. The mean winter hardiness of triticale was 
lower than 9 only in 3 years and only in a few experimental sites (two, 
one or six, depending on the year). We decided eventually to include all 
of these data in the model development to fit it with examples of ‘winter 
comfort conditions’ for triticale survival. 

As has been shown, multivariate regression analysis, using PPLS, also 
is useful for identifying the variables that affect WS (Waalen et al., 
2013). Both in their study and in our study, the risks and favorable 
factors for overwintering were different between the species and this 
was more obvious with different climate zones. This observation has 
important consequences for building more reliable yield and produc
tivity models that include WS, because the latter’s dependence on 
changing climate factors should be treated differently for different 
species. For oilseed and turnip rapes, the most important factor affecting 
WS was the number of days without snow in December and, for turnip 
rape in January, as well as mean soil temperature in April (Waalen et al., 
2013). The most important risk factor common to both species was ice 
encasement, which in our model, was only important for triticale. 

In our model for winter wheat, the most important risk factors were 
DIs, thermal vegetation index (also connected with deacclimation) and 
the severity of winter in November (plant were not sufficiently cold- 
acclimated) and in February, when the plants started to de-acclimate 
passively (Rapacz et al., 2014). The key favorable factor for increased 

Fig. 6. Predicted changes in deacclimation indices calculated on the basis of 
(A) maximum day temperature (DITmax) and (B) mean day temperature (DIT

mean) in Dębina (Poland) under different climate change scenarios (RCP 2.6, 
RCP 4.5, RCP 6.0 and RCP 8.5): mean, maximum and minimum values. 
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WS was the number of freezing/thawing cycle in December. While such 
conditions increase freezing tolerance, the mechanisms of this effect are 
poorly recognized (Kacperska, 2000). Thus, we can summarize that 
winter hardiness of wheat under Polish climate depends on 
cold-acclimation. 

In the case of triticale, when looking at VIP values (because the 
regression coefficients were very low) a similar positive dependence on 
freezing/thawing cycles at the beginning of winter was observed; 
however, the dependence on DIs was not sufficiently clear. Our studies 
indicate that at present triticale faces no problem with WS in Poland. 
However, the use of the model for winter hardiness prediction under 
climate change showed the same trend as in winter wheat, a decrease in 
WS with increased winter temperature, which again suggests a role for 
deacclimation. 

Snow cover may be considered both as a risk for WS and a factor that 
decreases the risk of winter damage. Snow cover provides insulation 
against extreme freezing, where a 10–20 cm layer is often enough to 
smooth the fluctuations in air temperature and maintain the tempera
ture near the plant close to freezing (Thorsen and Höglind, 2010). Many 
models have been proposed to describe the thermal effects of snow cover 
on the soil temperatures (e.g., Trnka et al., 2010). However, prolonged 
snow cover duration may increase the risk of ice encasement, anoxia, 
snow-mold infection and, because of the very low level of light, 
contribute to the depletion of assimilates or/and slowing down of the 
cold acclimation process, which is considered also as a factor that de
creases survival rate (Vico et al., 2014; Waalen et al., 2013). Because of 
this complex relationship, the use of snow cover parameters in WS 
models may be subject to major errors. In our empirical models, the 
importance of snow cover for wheat and triticale overwintering in 
Poland was low. The main reason was that during the 6 years of our 
study the snow cover was absent or very thin and short-lasting in the 
majority of the experimental sites. Global warming is expected to 
decrease the duration of snow cover and snow depth, both globally IPCC 
(2013) and specifically in Poland (Szwed et al., 2019). Thus, we 
excluded factors connected to snow cover (snow cover depth, duration 
and ice-encasement) from our predictive models. 

The most remarkable result of our study was that an increase in Tmean 
from climate warming during the winter may reduce WS in Poland’s 
humid continental climate (Dfb in the Köppen-Geiger classification, 
Kottek et al., 2006). This is the first report suggesting this possibility in 
the case of winter annual plants, although similar suggestions have been 
implied for temperate and boreal-zone perennial grasses (Höglind et al., 
2013) and woody plants (Arora and Taulavuori, 2016). The main pro
posed reason for this is an increased risk of plant deacclimation during 
warm breaks. The mechanisms of this phenomena, together with the 
deacclimation in the spring which is connected with dormancy break 
and/or depletion of assimilate reserves, are poorly understood (Kal
berer et al., 2006; Pagter and Arora, 2013; Rapacz et al., 2014). Two 
recent reports examine the mechanisms and genetic backgrounds of cold 
deacclimation in annual plants (Horvath et al., 2020; Wójcik-Jagła et al., 
2021). They conclude that deacclimation tolerance is genetically 
different from cold-acclimation capacity, which suggests there are 
different mechanisms for cold acclimation and deacclimation (Rapacz 
et al., 2017). Our study demonstrates the need to use existing and 
emerging knowledge on the mechanisms and genetic control of 
de-acclimation tolerance for breeding plants that are better adapted to 
the changing climate. This appears achievable because large variation in 
deacclimation tolerance has been shown for winter wheat, triticale and 
barley (Rapacz et al., 2017; Wójcik-Jagła et al., 2021). 

Among potential applications of knowing the future risk for WS is the 
possibility of incorporating our models into crop production models. 
These models currently account for winter damage to varying degrees 
using a range of variables such as crop death, reducing seedling density, 
crop biomass or leaf area (Barlow et al., 2015; Zheng et al., 2018). It can 
be assumed that the main negative effect of winter on yield is connected 
with the death of seedlings (Barlow et al., 2015). Currently, the 

economic damage threshold for winter cereal crops accepted by Polish 
insurance companies as so-called total damage is about 60% of 
winter-killed plants, which corresponds to a value of 4/5 on the WS scale 
we use (Gawrońska, 2014). In our models the frequency of wheat WS <5 
will change from 2.4% in 2020 to 1%, 4.8%, 15.4% and 43.8% in 2080 
(RCP2.6, RCP4.5, RCP6.0 and RCP8.5, respectively; Supplemental 
Table 10), while for triticale the lowest WS (lower than today) was 
5.496, predicted for RCP8.5 in 2080. Thus the predicted increase of the 
risk of low WS may have a potential impact on the profitability of winter 
wheat in Poland. 

Another risk from freezing damage in winter cereals, which is not 
considered in our model, is that plants will grow and develop faster 
because of increased temperatures, which increases their vulnerability 
to spring freezing events, which will potentially be of great economic 
importance owing to high sensitivity to sub-zero temperatures during 
anthesis (Alt et al., 2020; Barlow et al., 2015; Xiao et al., 2018). This 
means that the future effects of low winter/spring temperatures on 
cereal yields in Central Europe may be even worse than predicted in our 
models. Regardless of the climate projections and the changes expected 
with them, attention should also be drawn to the ongoing discussion 
around Arctic oscillation and the influence of the polar vortex on ther
mal fluctuations in winter (Kim and Choi, 2021), as the associated 
increasing variance in temperatures brings with it the threat of spring 
frosts and extreme winter freezing events. 

5. Conclusion 

The empirical models of winter survival showed that cold de- 
acclimation during winter are one of the most important risk factors 
for overwintering of winter wheat and triticale in Poland. At our chosen 
representative experimental site global warming did not reduce of the 
risk of poor wintering of winter wheat and even more winter hardy 
triticale. The models used in our study indicate that the degree of 
damage to the crop may increase as a result of the increasing occurrence 
of warm breaks and subsequent frosts in winter. This suggests that 
tolerance to deacclimation should be the target of plant breeders in 
coming decades. 
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Wójcik-Jagła, M., Daszkowska-Golec, A., Fiust, A., Kopeć, P., Rapacz, M., 2021. 
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